撰写于:  浏览:1918 次  分类:默认分类
1、封面介绍2、出版时间2021年6月3、推荐理由零基础读者应如何快速入门机器学习?数学基础薄弱的读者应如何理解机器学习中的数学原理?这些正是本书要解决的问题。本书从数学基础知识入手,通过前3章的介绍,帮助读者轻松复习机器学习涉及的数学知识;然后,通过第4-第13章的介绍,逐步讲解机器学习常见算法的相关知识,帮助读者快速入门机器学习;后,通过第14[...]

撰写于:  浏览:2598 次  分类:默认分类
1、封面介绍2、出版时间2021年8月3、推荐理由《Python计算机视觉与深度学习实战》立足实践,从机器学习的基础技能出发,深入浅出地介绍了如何使用 Python 进行基于深度学习的计算机视觉项目开发。开篇介绍了基于传统机器学习及图像处理方法的计算机视觉技术;然后重点就图像分类、目标检测、图像分割、图像搜索、图像压缩及文本识别等常见的计算机视觉项[...]

撰写于:  浏览:2810 次  分类:默认分类
1、封面介绍2、出版时间2021年9月3、推荐理由本书的编程语言以MATLAB为主,分别从学习方式和理论知识两个方面来对机器学习(实现人工智能的方法)的算法进行分类介绍。通过阅读本书,读者可以对人工智能的子集——机器学习形成一个系统、全面、完整的认识,并且在今后的研究工作中逐步拓展,*终形成自己的体系。全书共6篇,分别为特征处理算法、分类和聚类算法[...]

撰写于:  浏览:2569 次  分类:默认分类
1、封面介绍2、出版时间2021年3月3、推荐理由自早期以来,神经网络就一直是人工智能的支柱。现在,令人兴奋的新技术(例如深度学习和卷积)正在将神经网络带入一个全新的方向。在本书中,我们将演示各种现实世界任务中的神经网络,例如图像识别和数据科学。我们研究了当前的神经网络技术,包括ReLU 激活、随机梯度下降、交叉熵、正则化、Dropout 及可视化[...]

撰写于:  浏览:3384 次  分类:默认分类
1、封面介绍2、出版时间2021年4月3、推荐理由近年,人工智能热潮席卷而来。本书以图解的方式网罗了人工智能开发的基础知识,内容涉及机器学习、深度学习、强化学习、图像和语音的模式识别、自然语言处理、分布式计算等热门技术。全书以图配文,深入浅出,是一本兼顾理论和技术的人工智能入门教材。旨在帮助读者建立对人工智能技术的整体印象,为今后深入探索该领域打下[...]

撰写于:  浏览:4703 次  分类:默认分类
1、封面介绍2、出版时间2021年6月3、推荐理由《人工智能通识课》纵贯人工智能技术在全球 70 多年的发展历史,综合逻辑学派和神经网络学派的主流观点,系统介绍了人工智能各种算法的起源与演进过程,以及人工智能技术在消费者行为分析、机器人、自动驾驶、医疗等方面的应用实践,使读者可以全面了解人工智能领域的真实现状,及其给人类社会带来的技术、哲学乃至艺术[...]

撰写于:  浏览:5067 次  分类:强化学习电子书
1、封面介绍2、出版时间2021年8月3、推荐理由本书从工业界一线算法工作者的视角,对深度强化学习落地实践中的工程经验和相关方法论做出了深度思考和系统归纳。本书跳出了原理介绍加应用案例的传统叙述模式,转而在横向上对深度强化学习落地过程中的核心环节进行了完整复盘。主要内容包括需求分析和算法选择的方法,动作空间、状态空间和回报函数设计的理念,训练调试和[...]

撰写于:  浏览:2335 次  分类:强化学习电子书
1、封面介绍2、出版时间2021年6月3、推荐理由深度强化学习结合深度学习与强化学习算法各自的优势解决复杂的决策任务。得益于 DeepMind AlphaGo 和 OpenAI Five 成功的案例,深度强化学习受到大量的关注,相关技术广泛应用于不同的领域。本书分为三大部分,覆盖深度强化学习的全部内容。第一部分介绍深度学习和强化学习的入门知识、一些[...]

撰写于:  浏览:6531 次  分类:默认分类
大家好,我是站长飞燕。本站上线数年有余,为技术爱好者无偿提供了若干PDF电子书,感谢大家的支持!来北京的最初几年时间里,住着租的房子,每次搬家的时候,面对着很多的书,我就有点发愁,扔的话有点舍不得,搬的话有点费事,当时我就想,这些书要是变成PDF电子书就好了。后来,买了房子,由于家离公司比较远,从丰台边角到软件园,路上差不多得花费2个小时,电子书就[...]

撰写于:  浏览:1781 次  分类:PyTorch 教程
lr_scheduler 简介torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法。一般情况下我们会设置随着epoch的增大而逐渐减小学习率从而达到更好的训练效果。为什么需要调整学习率在深度学习训练过程中,最重要的参数就是学习率,通常来说,在整个训练过层中,学习率不会一[...]

撰写于:  浏览:2099 次  分类:PyTorch 教程
1、什么是学习率?学习率是指导我们在梯度下降法中,如何使用损失函数的梯度调整网络权重的超参数。其数学表达式如下所:new_weight = old_weight - learning_rate * gradient2、学习率的数学本质如上述公式,我们可以看到,学习率类似于微积分中的dx,所以学习率也被称为步长。3、学习率对损失值甚至深度网络的影响?[...]

撰写于:  浏览:1684 次  分类:PyTorch 教程
AdaGrad算法是什么?AdaGrad算法就是将每一个参数的每一次迭代的梯度取平方累加后在开方,用全局学习率除以这个数,作为学习率的动态更新。梯度下降算法、随机梯度下降算法(SGD)、小批量梯度下降算法(mini-batch SGD)、动量法(momentum)、Nesterov动量法有一个共同的特点是:对于每一个参数都用相同的学习率进行更新。但[...]

撰写于:  浏览:1686 次  分类:PyTorch 教程
AdaGrad是解决不同参数应该使用不同的更新速率的问题。Adagrad自适应地为各个参数分配不同学习率的算法。其公式如下:但是我们发现一个现象,本来应该是随着gradient的增大,我们的学习率是希望增大的,也就是图中的gt;但是与此同时随着gradient的增大,我们的分母是在逐渐增大,也就对整体学习率是减少的,这是为什么呢?这是因为随着我们更[...]

撰写于:  浏览:1508 次  分类:PyTorch 教程
Adam优化器是深度学习中最流行的优化器之一。它适用于很多种问题,包括带稀疏或带噪声梯度的模型。其易于精调的特性使得它能够快速获得很好的结果,实际上,默认的参数配置通常就能实现很好的效果。Adam 优化器结合了 AdaGrad 和 RMSProp 的优点。Adam 对每个参数使用相同的学习率,并随着学习的进行而独立地适应。此外,Adam 是基于动量[...]

撰写于:  浏览:1475 次  分类:默认分类
什么是向量?在数学中,向量(也称为矢量),指具有大小和方向的量。向量可以形象化地表示为带箭头的线段。箭头所指代表向量的方向;线段长度代表向量的大小。与向量对应的量叫做标量,标量只有大小,没有方向。向量的表示法向量的记法1:黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 向量的记法2:如果给定向量的起点(A)和终点(B),[...]

关注公众号,了解站长最新动态

    友情链接