撰写于    浏览:2639 次  分类: 梯度介绍
备注:本文修改时间为2021年5月27日大家好,我是飞燕网的站长,本文给大家说一下梯度以及梯度的物理意义吧。对于“梯度”这个东西,很多初学者搞不清楚,就连知乎上的大V,也是独乐乐不能与众乐乐,洋洋散散说了半天,读者也是一头雾水。之所以大家对“梯度”一头雾水,这是因为大家没有一个明确的理解路线,站长对梯度的理解路线为:导数->偏导数->方[...]

撰写于    浏览:28 次  分类: 默认分类
著名的数学家李邦河院士有个非常知名的观点:数学玩的是概念,而不是纯粹的技巧。中学数学里概念就很少,只能出很难的题,来看谁的水平高。到大学里重要的则是基本概念,这个东西掌握得很透,才能达到高水平。到了研究生之后,基础数学里面的代数数论、代数拓扑、微分拓扑里头,概念更是爆炸,都很难理解,不下功夫是不行的,因为对象很复杂。希望喜欢数学的人千万要重视基本概[...]

撰写于    浏览:40 次  分类: 梯度介绍
lr_scheduler 简介torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法。一般情况下我们会设置随着epoch的增大而逐渐减小学习率从而达到更好的训练效果。为什么需要调整学习率在深度学习训练过程中,最重要的参数就是学习率,通常来说,在整个训练过层中,学习率不会一[...]

撰写于    浏览:133 次  分类: 飞燕收徒
带徒时间:2021年6月14日到6月20日帮助徒弟成长总结:(1)帮助徒弟a解决openssl的模块安装问题;后又电话沟通,帮助徒弟a理清Python重点语法(星号的用户,元组特性),并安排request库的学习。(2)给徒弟b安排下一步的学习内容:强化学习中的贝尔曼方程的理解,以及动态规划的扩展学习。(3)给徒弟c安排深度学习的学习内容:了解深度[...]

撰写于    浏览:53 次  分类: 梯度介绍
学习率的作用在机器学习中,监督式学习通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法是一个广泛被用来最小化模型误差的参数优化算法。梯度下降法通过多次迭代,并在每一步中最小化成本函数在迭代过程中会控制模型的学习进度。​在梯度下降法中,都是给定的统一的学习率,整个优化过程中都以确定的步长进行更新,在迭代优化的前期中,学习率较大,则前进的步[...]

撰写于    浏览:52 次  分类: 梯度介绍
1、什么是学习率?学习率是指导我们在梯度下降法中,如何使用损失函数的梯度调整网络权重的超参数。其数学表达式如下所:new_weight = old_weight - learning_rate * gradient2、学习率的数学本质如上述公式,我们可以看到,学习率类似于微积分中的dx,所以学习率也被称为步长。3、学习率对损失值甚至深度网络的影响?[...]

撰写于    浏览:59 次  分类: 梯度介绍
AdaGrad算法是什么?AdaGrad算法就是将每一个参数的每一次迭代的梯度取平方累加后在开方,用全局学习率除以这个数,作为学习率的动态更新。梯度下降算法、随机梯度下降算法(SGD)、小批量梯度下降算法(mini-batch SGD)、动量法(momentum)、Nesterov动量法有一个共同的特点是:对于每一个参数都用相同的学习率进行更新。但[...]

撰写于    浏览:47 次  分类: 梯度介绍
AdaGrad是解决不同参数应该使用不同的更新速率的问题。Adagrad自适应地为各个参数分配不同学习率的算法。其公式如下:但是我们发现一个现象,本来应该是随着gradient的增大,我们的学习率是希望增大的,也就是图中的gt;但是与此同时随着gradient的增大,我们的分母是在逐渐增大,也就对整体学习率是减少的,这是为什么呢?这是因为随着我们更[...]

撰写于    浏览:60 次  分类: 梯度介绍
Adam优化器是深度学习中最流行的优化器之一。它适用于很多种问题,包括带稀疏或带噪声梯度的模型。其易于精调的特性使得它能够快速获得很好的结果,实际上,默认的参数配置通常就能实现很好的效果。Adam 优化器结合了 AdaGrad 和 RMSProp 的优点。Adam 对每个参数使用相同的学习率,并随着学习的进行而独立地适应。此外,Adam 是基于动量[...]

撰写于    浏览:48 次  分类: 梯度介绍
概述梯度下降算法(Gradient Descent Optimization)是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。梯度下降算法背后的原理:目标函数关于参数的梯度将是目标函数上升最快的方向。对于最小化优化问题,只需要将参数沿着梯度相反的方向前进一个步长,就可以实现目标函数的下降。这个步长又称[...]

撰写于    浏览:59 次  分类: 梯度介绍
1、随机梯度下降是什么?随机梯度下降算法每次从训练集中随机选择一个样本来进行学习,即: θ=θ−η⋅∇θJ(θ;xi;yi)2、随机梯度下降(SGD)算法的优势批量梯度下降算法每次都会使用全部训练样本,因此这些计算是冗余的,因为每次都使用完全相同的样本集。而随机梯度下降算法每次只随机选择一个样本来更新模型参数,因此每次的学习是非常快速的,并且可以进[...]

飞燕网
人工智能,资源分享

    友情链接