1、维度与形状的区别

当我们说一个向量的维度的时候,我们会说,这是一个1维度向量,2维向量,3维向量等等。在pytorch中,计算维度是通过向量的形状获取的,也就是:

import torch

input = torch.ones(3, 5)
print(input)

dim = len(input.shape)
print(dim)

2、维度的计数

对于上面的2维input向量,它有两个维度,分别表示为:0维和1维。

input向量的外形轮廓是这样的:

tensor([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

通过外形来看,我们可以知道最外面的中括号为1维,其次为2维。

3、dim=0和dim=1的表示

从俯瞰的角度来看,input向量长这个样子:

从dim=0的角度来看,input向量长这个样子:

从dim=1的角度来看,input向量长这个样子:

4、sum的理解

sum表示求和操作,当dim=0的时候,sum操作是这样执行的:

当dim=1的时候,sum操作是这样执行的: