撰写于:  浏览:1070 次  分类:PyTorch 教程
1、torch.is_storage(obj)函数介绍测试obj是不是storage类型,如果是的话就返回True,否则返回False。2、什么是Storage?在PyTorch中,Tensor 分为头信息区(Header)和存储区(Storage)。头信息区(Header)主要存储Tensor的形状(size)、步长(stride)、数据类型(t[...]

撰写于:  浏览:1327 次  分类:PyTorch 教程
1、Tensor的grad属性介绍PyTorch的Tensor有个grad属性,默认情况下,该属性为None,当第一次调用backward()计算梯度时,此属性被赋值,其值为计算的梯度。并且,将来对backward的多次调用之后,还会累积梯度,所以大家要记得清空梯度。2、Tensor的grad应用举例import torch x = torch.[...]

撰写于:  浏览:1069 次  分类:PyTorch 教程
torch.is_tensor 简介torch.is_tensor(obj),此方法很直观,如果obj是tensor的话返回true,否则返回false。与此方法对应的另一个方法是:isinstance(obj, Tensor)。需要注意的是,torch.is_tensor(obj)是torch的一个方法,而isinstance(obj, Tens[...]

撰写于:  浏览:1698 次  分类:PyTorch 教程
1、LazyLinear 简介PyTorch提供一个惰性的线性层,这个模块的作用就是可以帮助我们实现惰性初始化参数,另外,还不必在定义线性层的时候同时指定输入维度和输出维度,只需要指定输出维度即可,对于输入维度采用自动推断的方式。总之,LazyLinear 类的功能和作用有下面三点:(1)自动推断输入维度的大小。这个类允许用户在初始化时不指定输入特[...]

撰写于:  浏览:1069 次  分类:PyTorch 教程
1、PyTorch模型加载概述PyTorch是一个使用GPU和CPU优化的深度学习张量库,它也是一个动态神经网络构建工具。Pytorch模型加载是将已训练好的模型加载到内存中,以便使用。模型加载是模型应用的前提。Pytorch模型加载涉及到模型的序列化,反序列化和模型参数的赋值等操作。Pytorch中支持多种不同的序列化和反序列化方法,包括pick[...]

撰写于:  浏览:1106 次  分类:PyTorch 教程
Tensor 和 Numpy 的数组可以相互转换,并且两者转换后共享在 CPU 下的内存空间,即改变其中一个的数值,另一个变量也会随之改变。Tensor 转换为 Numpy 数组实现 Tensor 转换为 Numpy 数组的例子如下所示,调用 tensor.numpy() 可以实现这个转换操作。a = torch.ones(5) print(a) [...]

撰写于:  浏览:1764 次  分类:PyTorch 教程
1、PyTorch的发展历史PyTorch是一个由Facebook的人工智能研究团队开发的开源深度学习框架。在2016年发布后,PyTorch很快就因其易用性、灵活性和强大的功能而在科研社区中广受欢迎。在发布后的几年里,PyTorch迅速在科研社区中取得了广泛的认可。在2019年,PyTorch发布了1.0版本,引入了一些重要的新功能,包括支持ON[...]

撰写于:  浏览:6602 次  分类:机器学习电子书
1、封面介绍2、出版时间2020年1月3、推荐理由适读人群:1、机器学习与人工智能方向的从业者2、XGBoost应用开发人员3、机器学习、数据挖掘研究方向的学生4、机器学习或开源软件爱好者《深入理解XGBoost:高效机器学习算法与进阶》以机器学习必会知识做铺垫,深入剖析XGBoost的原理、分布式实现、深度应用、模型选择与优化等。第1~3章使读者[...]

撰写于:  浏览:4543 次  分类:机器学习电子书
1、封面介绍2、出版时间2018年8月3、推荐理由人工智能技术正以一种超快的速度深刻地改变着我们的生活,引导了第四次工业革命。美团作为国内O2O领域领先的服务平台,结合自身的业务场景和数据,积极进行了人工智能领域的应用探索。在美团的搜索、推荐、计算广告、风控、图像处理等领域,相关的人工智能技术得到广泛的应用。本书包括通用流程、数据挖掘、搜索和推荐、[...]

撰写于:  浏览:4003 次  分类:机器学习电子书
1、封面介绍2、出版时间2018年1月3、推荐理由适读人群 :本书适合对机器学习感兴趣的各类读者阅读,包括相关专业的大学生或研究生,研究人员,工程技术人员和企业技术管理人员阅读参考。不可不读的机器学习面试宝典!微软全球执行副总裁、美国工程院院士沈向洋,《浪潮之巅》《数学之美》作者吴军,《计算广告》作者、科大讯飞副总裁刘鹏,联袂推荐!人工智能几起几落[...]

撰写于:  浏览:3113 次  分类:机器学习电子书
1、封面介绍2、出版时间2021年01月3、推荐理由这是一本权威的人工智能从入门到精通的读本从人工智能的发展之路说起,结合丰富的应用与实战实例,详细阐述了Python入门、人工智能数学基础、手工打造神经网络、TensorFlow与PyTorch、卷积神经网络、目标分类、目标检测、图像语义分割、循环神经网络、自然语言处理、生成对抗网络、强化学习等行业[...]

撰写于:  浏览:15640 次  分类:计算机视觉电子书
1、封面介绍2、出版时间2020年6月3、推荐理由文字识别(OCR)是视觉感知中一个重要的技术,目的是从照片中提取文字信息。这项技术有着广泛的应用前景。比如,自动驾驶汽车路标识别,或把扫描文档转化成结构化的文字信息以方便检索。近几年来,随着深度学习等技术的发展,文字识别相关技术取得了突破性进展,特别是场景文字的检测、识别和结构化技术。这些技术的发展[...]

撰写于:  浏览:2237 次  分类:推荐系统电子书
1、封面介绍2、出版时间2018年10月3、推荐理由推荐系统发展到现在产生了许多具有广泛影响力的算法模型,经典的算法是协同过滤算法,其易于实现,因而具有广泛的实用价值,但它也存在着算法复杂度高和推荐精度低的问题。《机器学习算法实践——推荐系统的协同过滤理论及其应用》提出了一系列改进协同过滤推荐质量的方法,并将相关算法应用到实际生活中,开发出一个原型[...]

撰写于:  浏览:5005 次  分类:推荐系统电子书
1、封面介绍2、出版时间2020年4月3、推荐理由这是一本从技术、产品和运营3个角度讲解如何从0到1构建用户画像系统的著作,同时它还为如何利用用户画像系统驱动企业的营收增长给出了解决方案。作者有多年的大数据研发和数据化运营经验,曾参与和负责多个亿级规模的用户画像系统的搭建,在用户画像系统的设计、开发和落地解决方案等方面有丰富的经验。全书一共9章:第[...]

撰写于:  浏览:5739 次  分类:推荐系统电子书
1、封面介绍2、出版时间2020年1月3、推荐理由适读人群:本书主要面向广大从事风险控制的分析师、建模师、算法工程师。也适合对传统信用评分卡有初步认识的在校学生。同时也适合对机器学习在风控领域应用感兴趣的读者。本书基于Python全面介绍了机器学习在信贷风控领域的应用与实践,从原理、算法与工程实践3个维度全面展开,包含21种实用算法和26个解决方案[...]

关注公众号,了解站长最新动态

    友情链接