2019年6月


撰写于    浏览:893 次  分类: 梯度的物理意义
备注:本文修改时间为2020年6月27日大家好,我是飞燕网的站长,本文给大家说一下梯度以及梯度的物理意义吧。对于“梯度”这个东西,很多初学者搞不清楚,就连知乎上的大V,也是独乐乐不能与众乐乐,洋洋散散说了半天,读者也是一头雾水。之所以大家对“梯度”一头雾水,这是因为大家没有一个明确的理解路线,站长对梯度的理解路线为:导数->偏导数->方[...]

撰写于    浏览:154 次  分类: 趣谈数学
数学,不仅仅是去记公式,更要用心的去感受它,而且尽量的去多学,去深挖,这可能会花费很多的时间,导致有人会害怕浪费时间,毕竟很多人是面临着找工作的压力。多学一点无用的知识顶多算是多了点噪声,害怕多学而浪费时间,害怕深挖而浪费时间,这个已经属于观念级别的问题,已经达到激活函数层次,因为人的每个观念本质上就是人工智能领域中的激活函数。在这个层次如果有偏差[...]

撰写于    浏览:195 次  分类: 趣谈数学
虽然都是数学,线性代数和高数等其他数学分支,需要对知识的内涵加以深度的理解和思考,而数据结构和算法,更侧重于外形方面的认识。数据结构和算法,是我们很多人的弱项,究其原因,这也不能全怪于我们的学习方法有问题,而在于我们传统教育的土壤,因为我们中国人讲究含蓄,传统教育以分析内涵为主,而数据结构和算法这门学科,却以外形为主,例如链表,双向链表,树,图等。[...]

撰写于    浏览:144 次  分类: 简明机器学习教程
建好模型之后,必须对它进行评价,我们经常会使用一些评价指标来比较模型的预测准确度。常用的评价指标有:预测准确率,混淆矩阵,均方根误差等。1、分类指标1.1、预测准确率简单的说,就是正确的预测所占的比例。虽然它很简单容易理解,但是我们无法通过它得知预测误差是如何产生的。1.2、混淆矩阵混淆矩阵可以进一步了解预测模型的优缺点。通过样本的采集,我们能够直[...]

撰写于    浏览:127 次  分类: 简明机器学习教程
常用指标有3个:(1){X}的支持度表示X项出现的频率,可以表示为P(X)(2){X→Y}的置信度表示当X项出现时Y项同时出现的频率,可以表示为:P(XY)/P(X)(3){X→Y}的提升度表示X项和Y项一同出现的频率,并且考虑每项各自出现的频率,可以表示为:P(XY)/P(X)P(Y)。公式看起来很容易理解,但是在实际问题中,我们常用被项集这个概[...]

撰写于    浏览:124 次  分类: 趣谈数学
学人工智能的人群分两类,一种是将数学当做人工智能的工具,另一类人是将人工智能当数学的工具。首先要扪心自问一下,看看自己属于哪类人?然后反思一下,看看是否正确。田忌赛马的故事,流传至今,说明了一个道理:调整一下顺序,格局完全不一样。上面的两类人的认知上的区别,无非就是顺序上的差异。

撰写于    浏览:127 次  分类: 简明机器学习教程
主成分可以用已有的一个或多个变量表示。 比如,可以使用生素C这个变量来区分不同的食物。因为蔬菜含维生素C而肉类普遍缺乏,所以可以通过维生素C这个变量区分蔬菜和肉类,但是无法进步区分不同的肉类。为了进一步区分不同的肉类,可以选择把脂肪含量作为第2个变量,因为肉类含有脂肪,而大部分蔬菜则不然。由于脂肪和维生素C的计量单位不同,因此在组合之前,必须先对它[...]

撰写于    浏览:139 次  分类: 简明机器学习教程
尽管K均值聚类方法很有用,但是它有一定的局限:(1)每个数据点只能属于一个群组。然而,数据点可能恰好位于两个群组中间,无法通过k均值聚类方法确定它应该属于哪个群组(2)群组被假定是正圆形的。查找距离某个群组中心点最近的数据点,这一迭代过程类似于缩小群组的半径,因此最终得到的群组在形状上类似于正圆形。假设群组的实际形状是椭圆形,那么在应用k均值聚类方[...]

飞燕网
人工智能,资源分享

    友情链接