分类 Transformer 系列 下的文章


撰写于    浏览:146 次  分类: Transformer 系列
Seq2Seq模型可以用于处理输入序列和输出序列长度不相同的问题。常用的场景有:机器翻译、语音识别和文字识别三个领域为例。1、机器翻译领域比如将“ABC”输入序列翻译成“WXYZ”输出序列。Seq2Seq模型可以处理输入序列和输出序列长度不同问题。2、语音识别在attention-based的Seq2Seq基础上,引入了混合attention机制,[...]

撰写于    浏览:131 次  分类: Transformer 系列
什么是Seq2Seq?所谓Seq2Seq(Sequence to Sequence),就是一种能够根据给定的序列,通过特定的方法生成另一个序列的方法。它被提出于2014年,最早由两篇文章独立地阐述了它主要思想,分别是Google Brain团队的《Sequence to Sequence Learning with Neural Networks》[...]

撰写于    浏览:154 次  分类: Transformer 系列
《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的CNN和RNN,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。《Attention Is All Yo[...]

撰写于    浏览:170 次  分类: Transformer 系列
Transformer模型简介《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的CNN和RNN,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。Trans[...]

飞燕网
人工智能,资源分享

    友情链接